495 research outputs found

    Coordinated locomotion between robots separated by a surface

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 69-70).This SM thesis presents the design, modeling, and experimental verification of a novel, programmable connection mechanism for robots separated by a-surface. The connector uses electropermanent magnets (EPMs) [5] to establish a continuum of clamping force between the robots, enabling the motion of one robot to slave the other during a variety of maneuvers. The author designs a novel, solid-state EPM arrangement capable of generating up to an estimated 890N of clamping force under environmental load conditions. A relationship between geometric and environmental variables and connection assembly performance is first modeled and subsequently experimentally characterized. By implementing these connectors in a custom manufactured pair of assembly robots, the author demonstrates the connection assembly and magnetizing hardware can be compactly fit within a tetherless robot application. This mechanism provides a repeatable, easily-automated alternative to robotic systems that depend on mechanic means to regulate clamping force [6].by Andrew D. Marchese.S.M

    Soft robot actuators using energy-efficient valves controlled by electropermanent magnets

    Get PDF
    This paper presents the design, fabrication, and evaluation of a novel type of valve that uses an electropermanent magnet [1]. This valve is then used to build actuators for a soft robot. The developed EPM valves require only a brief (5 ms) pulse of current to turn flow on or off for an indefinite period of time. EPMvalves are characterized and demonstrated to be well suited for the control of elastomer fluidic actuators. The valves drive the pressurization and depressurization of fluidic channels within soft actuators. Furthermore, the forward locomotion of a soft, multi-actuator rolling robot is driven by EPM valves. The small size and energy-efficiency of EPM valves may make them valuable in soft mobile robot applications.United States. Defense Advanced Research Projects Agency (Grant W911NF-08-C-0060)United States. Defense Advanced Research Projects Agency (Grant W911NF-08-1-0228)Boeing Compan

    Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators

    Get PDF
    In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot onboard: power, actuation, processing, and control. At the core of the fish's soft body is an array of fluidic elastomer actuators. We design the fish to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum-body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared with studies on biological fish. We show that during escape responses, the soft-bodied robot has similar input–output relationships to those observed in biological fish. The major implication of this work is that we show soft robots can be both self-contained and capable of rapid body motion.National Science Foundation (U.S.) (NSF IIS1226883)National Science Foundation (U.S.) (NSF CCF1138967)National Science Foundation (U.S.) (1122374

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Design, fabrication, and control of soft robots with fluidic elastomer actuators

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.Cataloged from PDF version of thesis.Includes bibliographical references (pages 223-236).The goal of this thesis is to explore how autonomous robotic systems can be created with soft elastomer bodies powered by fluids. In this thesis we innovate in the design, fabrication, control, and experimental validation of both single and multi-segment soft fluidic elastomer robots. First, this thesis describes an autonomous fluidic elastomer robot that is both self-contained and capable of rapid, continuum body motion. Specifically, the design, modeling, fabrication, and control of a soft fish is detailed, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot on-board: power, actuation, processing, and control. At the core of the fish's soft body is an array of Fluidic Elastomer Actuators (FEAs). The fish is designed to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared to studies on biological fish. During escape responses, the soft-bodied robot is shown to have similar input-output relationships to those observed in biological fish. The major implication of this portion of the thesis is that a soft fluidic elastomer robot is shown to be both self-contained and capable of rapid body motion. Next, this thesis provides an approach to planar manipulation using soft fluidic elastomer robots. That is, novel approaches to design, fabrication, kinematic modeling, power, control, and planning as well as extensive experimental evaluations with multiple manipulator prototypes are presented. More specifically, three viable manipulator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their actuator structures, namely: ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax- based casting. Furthermore, two ways of fabricating a multiple DOF manipulator are explored: casting the complete manipulator as a whole, and casting single DOF segments with subsequent concatenation. An approach to closed-loop configuration control is presented using a piecewise constant curvature kinematic model, real-time localization data, and novel fluidic drive cylinders which power actuation. Multi-segment forward and inverse kinematic algorithms are developed and combined with the configuration controller to provide reliable task-space position control. Building on these developments, a suite of task-space planners are presented to demonstrate new autonomous capabilities from these soft robots such as: (i) tracking a path in free-space, (ii) maneuvering in confined environments, and (iii) grasping and placing objects. Extensive evaluations of these capabilities with physical prototypes demonstrate that manipulation with soft fluidic elastomer robots is viable. Lastly, this thesis presents a robotic manipulation system capable of autonomously positioning a multi-segment soft fluidic elastomer robot in three dimensions while subject to the self-loading effects of gravity. Specifically, an extremely soft robotic manipulator morphology that is composed entirely from low durometer elastomer, powered by pressurized air, and designed to be both modular and durable is presented. To understand the deformation of a single arm segment, a static physics-based model is developed and experimentally validated. Then, to kinematically model the multi-segment manipulator, a piece-wise constant curvature assumption consistent with more traditional continuum manipulators is used. Additionally, a complete fabrication process for this new manipulator is defined and used to make multiple functional prototypes. In order to power the robot's spatial actuation, a high capacity fluidic drive cylinder array is implemented, providing continuously variable, closed-circuit gas delivery. Next, using real-time localization data, a processing and control algorithm is developed that generates realizable kinematic curvature trajectories and controls the manipulator's configuration along these trajectories. A dynamic model for this multi-body fluidic elastomer manipulator is also developed along with a strategy for independently identifying all unknown components of the system: the soft manipulator, its distributed fluidic elastomer actuators, as well as its drive cylinders. Next, using this model and trajectory optimization techniques locally-optimal, open-loop control policies are found. Lastly, new capabilities offered by this soft fluidic elastomer manipulation system are validated with extensive physical experiments. These are: (i) entering and advancing through confined three-dimensional environments, (ii) conforming to goal shape-configurations within a sagittal plane under closed-loop control, and (iii) performing dynamic maneuvers we call grabs.by Andrew D. Marchese.Ph. D

    Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator

    No full text
    The goal of this work is to develop a soft robotic manipulation system that is capable of autonomous, dynamic, and safe interactions with humans and its environment. First, we develop a dynamic model for a multi-body fluidic elastomer manipulator that is composed entirely from soft rubber and subject to the self-loading effects of gravity. Then, we present a strategy for independently identifying all unknown components of the system: the soft manipulator, its distributed fluidic elastomer actuators, as well as drive cylinders that supply fluid energy. Next, using this model and trajectory optimization techniques we find locally optimal open-loop policies that allow the system to perform dynamic maneuvers we call grabs. In 37 experimental trials with a physical prototype, we successfully perform a grab 92% of the time. By studying such an extreme example of a soft robot, we can begin to solve hard problems inhibiting the mainstream use of soft machines.National Science Foundation (U.S.) (Grant 1117178)National Science Foundation (U.S.) (Grant EAGER 1133224)National Science Foundation (U.S.) (Grant IIS1226883)National Science Foundation (U.S.) (Grant CCF1138967)National Science Foundation (U.S.). Graduate Research Fellowship (Award 1122374

    Hydraulic Autonomous Soft Robotic Fish for 3D Swimming

    No full text
    © Springer International Publishing Switzerland 2016. Thiswork presents an autonomous soft-bodied robotic fish that is hydraulically actuated and capable of sustained swimming in three dimensions. The design of a fish-like soft body has been extended to deform under hydraulic instead of pneumatic power. Moreover, a new closed-circuit drive system that uses water as a transmission fluid is used to actuate the soft body. Circulation of water through internal body channels provides control over the fish’s caudal fin propulsion and yaw motion. A new fabrication technique for the soft body is described, which allows for arbitrary internal fluidic channels, enabling a wide-range of continuous body deformations. Furthermore, dynamic diving capabilities are introduced through pectoral fins as dive planes. These innovations enable prolonged fish-like locomotion in three dimensions.NSF (Grants 1117178, 1133224, IIS1226883 and CCF1138967)NSF (Award 1122374
    corecore